天然放射性核種を含有する市販試薬を用いた 放射線測定器の簡易点検法

栄井修平¹, 吉年 勉², 藤野秀樹^{1,2,†}

¹兵庫医科大学薬学部,²兵庫医科大学大学院薬学研究科 [†]h-fujino@hyo-med.ac.jp

> 2024年10月23日 受付 2024年12月4日 受理

法令改正により,放射線測定器の点検及び校正を1年毎に組み合わせて行うことが規定された。 そこで,天然放射性核種を含有する市販試薬を線源としたサーベイメータの簡易点検法を検討した。遮蔽試験による放射線の指数関数に従う減衰と,⁴⁰K及び⁸⁷Rbの放射能濃度に対する計数値に 良好な直線性と再現性が認められ,これらの評価に基づく簡易点検法を構築した。本法による放 射線測定器の信頼性確保が期待される。

Key Words: potassium-40, rubidium-87, survey meter, commercially available reagent, inspection

1. はじめに

令和5年10月1日より「放射性同位元素等 の規制に関する法律」施行規則第20条が改正 され、表面汚染検査等に使用する放射線測定 器については点検及び校正を1年毎に適切に 組み合わせて行うことが規定された¹⁾。校正は 日本産業規格 (JIS) で推奨された校正線源を用 いて実施することが求められているが²⁾.⁶⁰Co や¹⁴⁷Pm 等の使用許可を得ている事業所は少な い。そこで、使用許可の不要な核種による簡易 点検法の構築は、 放射線測定器の信頼性確保に 有用と考えられる。放射線管理が不要な核種と して、 市販試薬に含まれる天然放射性核種に着 目した。市販試薬は入手が容易かつ同位体比率 が高く,有用な簡易点検用線源になりうる³⁾。 本研究では、種々の市販試薬に含まれる天然核 種を放射線源とし、放射線の遮蔽特性や計数値 の直線性に着目したサーベイメータの簡易点検 法を提案する。

2. 方 法

2・1 サーベイメータ

ラギットシンチレーション式サーベイメー
タとして LUCREST TCS-1319H, Geiger-Müller
(GM) 計数管式サーベイメータとして TGS-146B (ALOKA,東京)を各2台用いた。なお,
各1台は JIS に基づく校正点検後1年以内の計測器を用いた。

2・2 放射線源の作製

異なる化学形で⁴⁰K や⁸⁷Rb を含有する複数 の試薬を用いた。⁴⁰K 含有試薬としてリン酸二 水素カリウム (KH₂PO₄, 9.33 Bq/g), 臭化カリ ウム (KBr, 10.7 Bq/g), 硝酸カリウム (KNO₃, 12.6 Bq/g), 硫酸カリウム (K₂SO₄, 14.6 Bq/g), 塩化カリウム (KCl, 17.0 Bq/g) を用いた。また, ⁸⁷Rb 含有試薬として臭化ルビジウム (RbBr, 464 Bq/g), 硝酸ルビジウム (RbNO₃, 519 Bq/g), 硫酸ルビジウム (Rb₂SO₄, 573 Bq/g), 塩化ルビ

[©] BY © Japan Radioisotope Association 2025. This is an open access article distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) License (https://creativecommons.org/licenses/by/4.0/)

ジウム (RbCl, 632 Bq/g) を用いた。その他, 酸 化ルテチウム (Lu₂O₃, ¹⁷⁶Lu, 45.0 Bq/g) と, バッ クグラウンド用試薬として放射性核種を含まな い塩化ナトリウム (NaCl) を用いた。なお, こ れらは富士フィルム和光純薬 (大阪) より特級 試薬を入手した。さらに, 同量の RbCl と NaCl を混合し, 50% RbCl を調製した。これらの試 薬をミルにて破砕して均質化し, 試料皿 (内 径50×厚さ6mm, 千代田テクノル, 大阪) に 充填して, 試料表面を4 μ m 厚のポリエステル フィルム (ルミラー, 東レ, 東京) で覆い, 放 射線源を作製した。この他, 日本アイソトー プ協会より ¹⁴C 標準線源 (3.83 kBq, 10×15 cm, Eckert&Ziegler) を入手した。

2・3 遮蔽試験による半価層の評価

2・2 節で KCl から作製した⁴⁰K 線源, RbCl か ら作製した⁸⁷Rb 線源,¹⁷⁶Lu 線源及び¹⁴C 標準 線源を各サーベイメータのプローブ部と密着 させて1 分間計測した。さらにアルミニウム 箔 (密度: 2.88 mg/cm²) またはアルミニウム板 (62.0 mg/cm²) を適宜重ねてプローブとの間に挟 み同様の計測を行った。密度範囲は¹⁴C 及び⁸⁷Rb で2.88-8.64 mg/cm²,¹⁷⁶Lu で11.5-34.5 mg/cm², ⁴⁰K で62.0-186 mg/cm² とした。得られた各密 度における計数率の対数から傾き (Slope) を求 め,半価層 (D₁₂) を算出した。

2・4 検出効率の評価

RbCl, Lu₂O₃, KClを5cm幅のポリプロピレ ンテープ(Scotch, スリーエムジャパン)に 吸着させて秤量した。これらの表面をポリエ ステルフィルムで保護し,検出効率評価用の 線源とした。また,既報⁴⁾に従い¹⁴C面線源 (367 Bq/cm²)をインクジェットプリンタで印刷 した。線源を10cm厚の鉛ブロック遮蔽材にて 四方を囲い,校正済みのラギットシンチレー ション式またはGM計数管式サーベイメータ で10分間計測した。各試薬の計数率を試薬 重量から求めた放射能(dpm)で除算して検出 効率を求めた。また、メーカーが公表してい る各サーベイメータのエネルギー特性値⁵⁾を データ抽出ツール WebPlotDigitizer (URL: https:// automeris.io/WebPlotDigitizer/)を用いて数値化 した。さらに、これらを PK/PD 解析ソフト Phoenix WinNonlin[®] (version 8.4, CERTARA) で シグモイド関数にて解析し、核種の β 線最大エ ネルギー (E_{max})と検出効率の関係式を導いた。

2·5 ⁴⁰K 及び⁸⁷Rb の直線性評価

2・2 節で試薬から作製した⁴⁰K線源 (9.33– 17.0 Bq/g) 及び⁸⁷Rb線源 (316–632 Bq/g) を鉛製 シールドボックス内でイメージングプレート (IP, BAS-MS 2025, FUJIFILM,東京) と24 時間 密着露光させた。その後,画像解析装置 (Amersham Typhoon scanner IP システム, Cytiva,東 京)で輝尽発光値 (PSL)を計測した。さらに, これらの線源をラギットシンチレーション式及 び GM 計数管式サーベイメータのプローブ部 と密着させて3 分間計測した。得られた計数値 と線源の放射能濃度について直線性を評価し た。

2・6 サーベイメータの簡易点検法の構築

2・2 節で作製した9.33 または17.0 Bq/g の⁴⁰K 線源,464 または632 Bq/g の⁸⁷Rb 線源を校正済 みサーベイメータのプローブ部と密着させて 3 分間計測を行った。また,17.0 Bq/g の⁴⁰K 線 源と632 Bq/g の⁸⁷Rb 線源にはそれぞれアルミ ニウム板1 枚 (密度:62.0 mg/cm²),アルミニウ ム箔2 枚 (密度:5.76 mg/cm²) を用いて遮蔽試 験を行った。さらに,計数値の変動係数と核種 毎の D_{1/2},放射能濃度と計数値の Slope につい て評価した。これらを7 回繰り返し,それぞれ の変動係数を求めた。

3. 結 果

3・1 遮蔽試験による半価層の評価

校正済みサーベイメータのプローブを¹⁴C線 源と密着させた際の計数率はラギットシンチ レーション式で355±5 cpm に対して,GM 計 数管式では1036±47 cpm であり相対的に高い 値を示した。また、 87 Rb 線源ではそれぞれ230 ±5,386±12 cpm であり、 14 C 線源と同様にGM 計数管式で高い計数率を示した。一方、 40 K で はそれぞれ625±6,654±8 cpm であり Student's t 検定において有意な差は認められなかった。遮 蔽試験では、いずれの核種においても設定した 密度範囲で指数関数に従う放射線の減衰が認め られた (R²>0.996) (Fig. 1)。なお、計数率の変 動係数は7%未満であった。

さらに、核種固有の $D_{1/2}$ が算出され、⁸⁷Rb で は校正済み (Calibrated) のラギットシンチレー ション式サーベイメータで 5.14±0.61 mg/cm², GM 計数管式では 5.16±0.48 mg/cm² であり Student's t 検定においてサーベイメータ間で有意 差は認められなかった (Table 1)。さらに⁴⁰K の $D_{1/2}$ はそれぞれ 68.0±3.72, 67.0±4.73 mg/cm² と同等であった。また、¹⁴C でも同様の結果で あったが、¹⁷⁶Lu では用いたサーベイメータ間 にて異なる $D_{1/2}$ が得られた。

Fig. 1 Attenuation properties by shielding with aluminum.

Table 1 Half-value layer of radionuclides

Half-value layer (mg/cm ²)		¹⁴ C	⁸⁷ Rb	¹⁷⁶ Lu	⁴⁰ K
Scintillation	No.1 (calibrated)	2.28 ± 0.17 [2.14-2.42]	5.14 ± 0.61 [4.65-5.63]	22.6 ± 2.36 [20.7-24.5]	68.0 ± 3.72 [65.0-70.9]
	No.2	2.18 ± 0.26 [1.97-2.39]	5.72 ± 0.87 [5.02-6.41]	21.0 ± 1.66 [19.6-22.3]	71.1 ± 1.69 [69.7-72.4]
Geiger-Müller	No.1 (calibrated)	2.44 ± 0.11 [2.36-2.53]	5.16 ± 0.48 [4.78-5.54]	19.8 ± 1.59 [18.5-21.1]	67.0 ± 4.73 [63.2-70.8]
	No.2	2.46 ± 0.20 [2.30-2.62]	5.02 ± 0.39 [4.70-5.33]	16.7 ± 1.21 [15.7-17.7]	68.3 ± 3.32 [65.7-71.0]
Mean ± S.D. [95% CI] (n=7)					

3・2 検出効率の評価

¹⁴C ではラギットシンチレーション式サーベ イメータ (0.053±0.001%) と比較して GM 計 数管式 (0.159±0.001%) で約3 倍の検出効率 が得られた。また、⁸⁷Rb ではそれぞれ0.805± 0.133, 2.11±0.182% と GM 計数管式で約2.6 倍 であった。一方、⁴⁰K ではそれぞれ55.4±4.26% と 56.6±4.26% であり検出器による検出効率の 差は認められなかった (Fig. 2)。これらの結果 から、 E_{max} と検出効率についてシグモイド関数 の関係式が導かれた (eq.(1))。

Detection efficiency (%) =
$$\frac{a \cdot E_{max} (MeV)^c}{b^c + E_{max} (MeV)^c}$$
 (1)

Eq.(1)のaは最大検出効率,bは最大検出効率の50%の検出効率を示すEmax,cはシグモイド係数を表す。サーベイメータ間でbの値が異なり、ラギットシンチレーション式(0.585±0.0002 MeV)と比較してGM計数管式(0.558±0.0003 MeV)では低値を示した。なお、これらの傾向はサーベイメータのエネルギー特性値でも同様であり、ラギットシンチレーション式と比較してGM計数管式ではbが低値を示した。

3·3 ⁴⁰K 及び⁸⁷Rb の直線性評価

⁴⁰K 及び⁸⁷Rb 線源からいずれも放射能濃度に 比例したラジオルミノグラムが得られ,放射能

Fig. 2 Detection efficiency of radionuclides measured by survey meters.

濃度と PSL は決定係数0.991 以上の高い相関性 が認められた (Fig. 3)。また、検量線の Slope の変動係数は1%未満、各線源の放射能濃度の 真度は93–105%であった (data not shown)。

これらの線源をサーベイメータで計測して検 量線を作製した。⁴⁰K 及び⁸⁷Rb のいずれも放射 能濃度と計数値の相関が認められた (Fig. 4)。

放射能濃度と計数値は決定係数0.988 以上の 相関性が認められた (Table 2)。さらに, Slope の変動係数は3.9%未満であり, Fig. 3 で示した ラジオルミノグラフィ法による放射能濃度と の直線性評価と同等の結果が確認された。ま た, ⁴⁰K 検量線の Slope は検出器によらず同等 であったが, ⁸⁷Rb 検量線では GM 計数管式の Slope(1.87±0.05) に対してラギットシンチレー ション式では約59%まで低下した。

3・4 サーベイメータの簡易点検法の構築
 ⁴⁰K 及び⁸⁷Rb 線源を用いた3分間の計測を7
 回行った結果,各線源における計数値の変動係

Fig. 3 Radioluminogram and calibration curves of ⁴⁰K and ⁸⁷Rb radiation sources.

数は4%未満であった (Table 3)。

計数値から算出した⁴⁰K 及び⁸⁷RbのD_{1/2}は ラギットシンチレーション式とGM 計数管式 サーベイメータで類似した値を示した。また, 放射能濃度と計数値のSlopeは⁴⁰K では検出器 によらず同等であったが,⁸⁷Rb ではラギットシ ンチレーション式サーベイメータで低下した。 なお,これらの結果はTable 1 及び2 に示した D_{1/2} 及び Slope の2 標準偏差内であった。

4. 考 察

本研究では,市販試薬に含まれる天然放射性 核種を用いた放射線測定器の点検法について検 討した。本検討で用いた試薬に含まれる天然放

Fig. 4 Relationship between radioactivity and radiation counts.

Table 2	Linearity of calibration curves for ⁴⁰ K and ⁸⁷ Rb
	radioactivity

		Scintillation		Geiger-Müller		
		No.1 (Calibrated)	No.2	No.1 (Calibrated)	No.2	
⁴⁰ K	Slope	103 ± 1.99 [102-104]	106 ± 2.59 [104-108]	110 ± 1.33 [109-111]	109 ± 1.99 [108-110]	
	\mathbb{R}^2	0.994	0.996	0.996	0.998	
⁸⁷ Rb	Slope	1.11 ± 0.03 [1.09-1.13]	1.03 ± 0.02 [1.02-1.04]	1.87 ± 0.05 [1.83-1.91]	1.85 ± 0.04 [1.82-1.88]	
	\mathbb{R}^2	0.988	0.993	0.993	0.992	

Mean ± S.D. [95% CI] (n=7)

	Radiation source	Unit	Scintillation	Geiger-Müller	
⁴⁰ K	$\mathrm{KH}_{2}\mathrm{PO}_{4}$		1120 ± 33.5 (3.0)	1153 ± 26.0 (2.3)	
	KCl	Counts	$1890 \pm 60.2 (3.2)$	$2034 \pm 26.9 (1.3)$	
	*KCl		1030 ± 37.8 (3.7)	1084 ± 38.5 (3.6)	
	Slope		103 ± 3.20 (3.1)	111 ± 1.53 (1.4)	
	D _{1/2}	mg/cm ²	64.2 ± 5.21 (8.1)	61.4 ± 2.39 (3.9)	
⁸⁷ Rb	RbBr		669 ± 19.3 (2.9)	1009 ± 31.6 (3.1)	
	RbCl	Counts	845 ± 15.0 (1.8)	$1350 \pm 24.4 \ (1.8)$	
	*RbCl		506 ± 17.7 (3.5)	706 ± 20.3 (2.9)	
	Slope		1.13 ± 0.02 (1.8)	1.89 ± 0.04 (2.1)	
	D _{1/2}	mg/cm ²	6.21 ± 0.57 (9.2)	5.20 ± 0.13 (2.5)	
KH2PO4: 9.33 Bq/g, KCI: 17.0Bq/g			*Shielding		
RbBr: 464 Bq/g, RbCl: 632 Bq/g			Mean \pm S.D. (C.V.%) (n=7)		

Table 3 Radiation counts, half-value layer, and linearity of radiation sources using ⁴⁰K and ⁸⁷Rb

射性核種はいずれも 12.8 億年以上と長い物理学 的半減期を有しており,恒常的に放射線が放出 される特性を利用した⁴⁰Kの距離や遮蔽による放 射線の減衰についての教育が報告されている⁶。

遮蔽試験による放射能の減衰は指数関数に従 うことが知られており, 密度検量線から算出さ れる D₁₀ は点検の評価指標として有用と考えら れる。本検討で得られた D₁₂ は既報⁷⁾ でラジオ ルミノグラフィ法にて報告されている値 (⁴⁰K: 69.8 mg/cm², ⁸⁷Rb: 5.50 mg/cm²) と同等であり、 サーベイメータを用いた遮蔽試験においても信 頼性の高い D_{1/2} の算出が可能であった。特に, ⁴⁰Kと⁸⁷Rbはβ⁻壊変の割合が89及び100%と高 く、その他の放射性壊変の影響を受け難いこと から測定器間で D1/2 の誤差が少なく有用な点検 用線源になりうる。一方,¹⁷⁶Luでは検出器間で 異なる D₁₂ が算出され、y転移の影響が考えられ た。これらの結果から、β線測定用サーベイメー タの点検用線源には、β⁻壊変の割合が高くγ転 移の寄与が少ない核種が適することが示唆され た。また、核種の D₁₀ は β線エネルギーと相関 することが知られており⁸⁾, 遮蔽試験によって 核種のβ線エネルギーに応じた計数率の減衰を 検証可能である。一方、表面汚染測定器として 蛍光作用を利用したシンチレーション式と電離 作用を利用した GM 計数管式サーベイメータ

が汎用されている^{9,10)}が、一般に GM 計数管式 と比較してシンチレーション式サーベイメータ で低エネルギー核種の検出効率が低いことが知 られている^{5,11)}。本検討からも検出原理が異な るサーベイメータ間で計数値を直接比較するこ とは困難であることが示唆された。

さらに、⁴⁰K または⁸⁷Rb 含有試薬は分子量の 異なる複数の試薬が容易に入手可能であること から、放射能濃度に応じたサーベイメータの計 数値の変化を検証可能と考えられる。特級試薬 の純度は98%以上であり、天然での放射性同 位元素の存在比率から、容易に放射能濃度が算 出可能である。ラジオルミノグラフィ法によっ て⁴⁰K 及び⁸⁷Rb 線源の設定濃度内における計数 値の直線性が確認され、これらの点検用線源と しての有用性が示唆された。さらに、サーベイ メータでの計測において、ラジオルミノグラフィ 法と同等の直線性と良好な再現性が確認され、 BG の10 倍以上の計数値が得られたことから本 線源はサーベイメータの点検に使用可能な放射 線エネルギーと放射能量を有すると考えられた。

点検法を構築するにあたり、基準範囲の設定 が必要である。一般に、放射線測定の計数値は 正規分布に従うとされており¹²⁾、Table 3 から本 検討における計数値の変動係数は4%未満であっ た。理論上の標準偏差は RbCl の遮蔽試験で得ら れた506 counts の平方根から22.5 counts、計数値 の相対誤差は4.5%以下と見積もられ、確率分布 に従う誤差以外の計数値への影響は少ないと考 えられた。そこで、包含計数を2として基準範囲 を設定した簡易点検を提案する。校正済みサー ベイメータによる計測から得られた D_{1/2} 及び放 射能濃度と計数値の Slope は本基準範囲内に含ま れており、基準範囲の設定は妥当と考えられる。

本法は同一試料の遮蔽による減衰,及び同一 核種での放射能濃度と計数値の直線性について 確認可能である。また,点検に要する時間は 30分程度と比較的簡便に実施可能である。本 点検法にて放射線測定器の信頼性確保が可能と 考えられる。

5. 結 語

天然核種を含有する市販試薬を利用した放射 線測定器の点検法が見出された。市販試薬は放 射線管理が不要であり,放射線管理区域外での 点検が可能である。本法による放射線測定器の 信頼性確保が期待される。

著者情報

著者貢献内容

栄井修平:研究の実施と解析, 論文の作成 吉年勉:データの取得

藤野秀樹:研究の統括と実施,論文の推敲 ORCID 番号

栄井修平:なし

- 吉年 勉:なし
- 藤野秀樹:なし
- 利益相反の開示

本論文に関連し,著者全員について開示すべ き利益相反 (conflict of interest; COI) 関係にあ る企業等はない。

謝 辞

本研究に当たりご協力頂きました,兵庫医 科大学薬学部の清水歌乃氏および松岡佳佑氏 に感謝の意を表します。本研究はJSPS 科研費 JP22K02968, JP24K20186の助成を受けたものです。

文 献

- 原子力規制委員会,放射線障害予防規程に定める べき事項に関するガイド,改正令和4年3月16 日原規放発第22031617号原子力規制委員会決定
- 2) 磯部理央,古川未来,大野紗綾,進藤遼太,他, シンチレータ式簡易測定器の諸特性に関する基礎 検討,日本放射線安全管理学会誌,22,72-82 (2023)
- 藤野秀樹,塩化カリウムを用いた密度測定及び 放射線教育への利用について,ISOTOPE NEWS, 722,34-38 (2014)

ISOTOPES, 71, 29-33 (2022)

- 5) アロカ株式会社, LUCREST TCS-1319H 仕様書, https://www.aloka.co.jp/usersupport/catalog/pdf/AR-020.pdf (accessed July 12, 2024)
- 河野孝央,塩化カリウム試薬で製作した放射線 源を用いる分担測定法による高校生の放射線教 育,RADIOISOTOPES, 62,639-648 (2013)
- 7) 栄井修平,吉年 勉,藤野秀樹,天然放射性核 種の新規医療利用への提案, *RADIOISOTOPES*, 73,225–231 (2024)
- 藤野秀樹, 浦元沙和, 小松理佳子, 天然放射性 核種を用いた放射線教育, *RADIOISOTOPES*, 71, 23-28 (2022)
- (数田治三,鎌田貴志,渡井勝範,天野 豁, 他,動的予測サーベイメータの⁶⁰Co汚染検査への応用, *RADIOISOTOPES*, **57**,669–677 (2008)
- 山西弘城,杉浦紳之,表面汚染密度測定における走査条件と検出能力との関係,保健物理,44, 304–312 (2009)
- 大塚 厳, サーベイメータの特性と使用法(1), RADIOISOTOPES, 33, 247-256 (1984)
- 河野孝央,自然放射能線源を用いて行う放射線 計数の統計的変動を理解するための測定実習, RADIOISOTOPES, 63,345–354 (2014)

Abstract

A Simple Inspection Method for Radiation Measuring Instruments Using Commercially Available Reagents Containing Natural Radionuclides

Shuhei SAKAI¹, Tsutomu YODOSHI² and Hideki FUJINO^{1, 2, †}: ¹School of Pharmacy, Hyogo Medical University, ²Graduate School of Pharmacy, Hyogo Medical University, [†]hfujino@hyo-med.ac.jp

According to the revision of act on the regulation of radioisotopes in 2023, inspection and calibration of radiation measuring instruments has been obligated. In this study, inspection methods for survey meters using commercially available reagents containing natural radionuclides as a radiation source was investigated. As a result of shielding test, the linearity and reproducibility of attenuation was confirmed. Furthermore, correlation of radiation counts with concentration of ⁴⁰K and ⁸⁷Rb radioactivity was founded. Based on these results, a simple inspection method for survey meters was established.

(Received October 23, 2024)

(Accepted December 4, 2024)